
General theory The tetrahedron and its symmetries Validated numerics: why and how? Putting everything together

Qualitative properties of solutions of the nonlinear
Schrödinger equation on metric graphs
Computer-assisted study of sign-changing solutions

on the tetrahedron graph
Damien Galant

CERAMATHS/DMATHS Département de Mathématique
Université Polytechnique Université de Mons

Hauts-de-France F.R.S.-FNRS Research Fellow

Joint work with Colette De Coster (CERAMATHS/DMATHS)
and Christophe Troestler (UMONS)

Sapienza Università di Roma, Wednesday 19 February 2025

Damien Galant Computer-assisted study of NLS on the tetrahedron 19 February 2025 1



General theory The tetrahedron and its symmetries Validated numerics: why and how? Putting everything together

The spectral problem on metric graphs

The spectral problem on a compact metric graph amounts to find all
couples (γ, u), with u ̸= 0, solving the differential system



−u′′ = γu on each edge e of G,

u is continuous for every vertex v of G,∑
e≻v

du
dxe

(v) = 0 for every vertex v of G.

No Dirichlet vertices → γ1 = 0.
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The nonlinear Schrödinger equation on metric graphs

Given p ≥ 2, we are interested in solutions of


−u′′ + λu = γ2|u|p−2u on every edge of G,

u is continuous on G,∑
e≻v

du
dxe

(v) = 0 for every vertex v .

(Pp)

When p = 2, the solutions of (Pp) are the eigenfunctions in E2.
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Nodal action ground states

Among all solutions of (Pp) when p > 2, we are particularly interested in
nodal action ground states, namely sign-changing solutions which
minimize the action functional

Jp(u) := 1
2∥u′∥2

L2(G) + λ

2 ∥u∥2
L2(G) − γ2

p ∥u∥p
Lp(G)

among all nonzero sign-changing solutions of (Pp).

Question
What is the behavior of nodal action ground states as p → 2?
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The quasilinear regime p ≈ 2 (p > 2)

Proposition
Let (pn)n≥1 ⊆ (2, +∞) be a sequence of exponents which converges to 2

and (upn)n≥1 ⊆ H1(G) be a sequence of nonzero solutions to the problems
(Ppn). Assume that (upn)n converges weakly in H1(G) to a function
u∗ ∈ H1(G). Then, u∗ belongs to E2 and one has∫

G
u∗ ln |u∗|φ dx = 0 ∀φ ∈ E2.

We say that u∗ ∈ E2 is a solution of the reduced problem if the above
condition holds.
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Variational formulation

The functional J∗ : E2 → R

J∗(φ) := 1
4

∫
G

φ2(x)
(
1 − 2 ln |φ(x)|

)
dx

is of class C1, and the solutions of the reduced problem coincide with its
critical points.

We thus have two goals:

1 find all nonzero critical points φ∗ ∈ E2 of J∗;
2 determine the nondegenerate critical points φ∗ ∈ E2, namely those for

which the Hessian J ′′
∗ (φ∗) is invertible

(when it is defined, which is
not the case around eigenfuncions vanishing identically on edges);

Using a Lyapunov-Schmidt argument, we can show existence and
uniqueness results around a nondegenerate critical point for (Pp),
when p ≈ 2. But how to do goals 1 and 2?
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Geometry of J∗

For any φ ∈ E2 \ {0}, the map

(0, +∞) → R : t 7→ J∗(tφ)

has a unique maximum.

Its value can be computed explicitly and is given by

n∗(φ) = exp
(

−
∫

G φ2 ln |φ| dx∫
G φ2 dx

)
.
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The reduced Nehari manifold

The reduced Nehari manifold N∗, defined by

N∗ :=
{

φ ∈ E2 \ {0}
∣∣∣ J ′

∗(φ)[φ] = 0
}

=
{

φ ∈ E2 \ {0}
∣∣∣ −

∫
G

φ2 ln |φ| = 0
}

,

contains all critical points of J∗.

The reduced Nehari manifold N∗ is a compact C1-manifold in E2,
diffeomorphic to a sphere via the map φ 7→ n∗(φ)φ.

Theorem (Bonheure, Bouchez, Grumiau, Van Schaftingen (2008))
Weak limits of nodal action ground states minimize J∗ over N∗.
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The tetrahedron

In the remainder of the talk, we will focus on the following graph Gt.

v0

v1

v2

v3
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Second eigenspace of Gt

The second eigenvalue of the problem is

γ2 =
(
arccos(−1/3)

)2

and the second eigenspace is given by

E2 =
{

φa
∣∣ a = (a0, a1, a2, a3) ∈ R4, a0 + a1 + a2 + a3 = 0

}
,

where φa is such that

φa(x) =
ai sin(√γ2(1 − x)) + aj sin(√γ2x)

sin(√γ2) ,

if x belongs to the edge vivj .
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Second eigenspace of Gt
What you should remember

Only two things :-)

1 the eigenspace

E2 =
{

φa
∣∣ a = (a0, a1, a2, a3) ∈ R4, a0 + a1 + a2 + a3 = 0

}
has dimension three;

2 a encodes the values of φa at the vertices, in the sense that

φa(vi) = ai

for all i ∈ {0, 1, 2, 3}.
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Symmetries of Gt

The group
Gt := S4 × {±1}

acts on E2

due to the fact that “all vertices of the tetrahedron are the
same” and that the functional J∗ is even.

In this way, we obtain an isometric group action

Gt × E2 → E2 : (g , φ) 7→ g · φ,

such that
J∗(g · φ) = J∗(φ)

for all (g , φ) ∈ Gt × E2.
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Critical points created by the symmetries

The presence of such a rich symmetry group entails the existence of four
distinct families of critical points, due to the principle of symmetric
criticality.

Theorem (Principle of symmetric criticality, Palais, 1979)
Assume that the action of the topological group G on the Hilbert space E
is isometric.

If J ∈ C1(E , R) is invariant under this action and if u is a
critical point of J restricted to

Fix(G) :=
{

u ∈ E | ∀g ∈ G , g · u = u
}

,

then u is a critical point of J.
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The families of critical points

Proposition
The following eigenfunctions are critical points of J∗:

f0 := πN∗(φ(1,−1,0,0));
f1 := πN∗(φ(1,−1/3,−1/3,−1/3));
f2 := πN∗(φ(1,1,−1,−1));
f3 := πN∗(φ(1,−1,c,−c)) where c ∈ (0, 1) maximizes the function

[0, 1] → R : c 7→ J∗
(
πN∗(φ(1,−1,c,−c))

)
.

Moreover, for every g ∈ Gt and every i ∈ {0, 1, 2, 3}, g · fi is a critical
point of J∗.

For instance, f1 is a critical point of J∗ restricted to the one-dimensional
subspace of E2 taking equal values in v1, v2 and v3.
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A natural question

Critical point theory (using the principle of symmetric criticality, Morse
theory, etc), will give relations on the number of critical points and the
existence of some specific symmetric critical points.

However, it cannot classify all critical points of J∗.

Question
Does J∗ possess critical points other than the ones of the four
aforementioned families?

Answer (De Coster, G., Troestler (2024))
Those are the only critical points

as shown by a computer-assisted proof.
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A first example

Let us compute sin(0) and sin(π) using Python.

Image from https://fr.wikipedia.org/wiki/Fichier:Python-logo-notext.svg
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Floating-point numbers in a nutshell

Rough idea
Floating-point numbers use the “scientific notation” on base 2, where both
the significand and the exponent are written with a given number of bits
(digits in base 2).
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Rounding modes

A first (obvious) limitation of numerical computations
The set of floating-point numbers is finite!

Perhaps worse, even if a, b are floating-point numbers, a + b may not be
such a number.

There are thus several rounding modes, depending on whether the result is
to be rounded up, down, towards zero, etc.

A natural question
How to obtain mathematically rigorous results based on numerical
computations?
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Interval arithmetic: a simple solution?
The main idea of interval arithmetic is very simple, yet powerful.

The idea of interval arithmetic
We will replace numbers by intervals

in such a way that the result of
an operation belongs to the returned interval.

Appealing:
to analysts: this is a quantitative version of the ε’s and the δ’s;
to physicists: physical measurements are performed up to a finite
precision anyway.

Although this may seem a paradox, all exact science is dominated by the
idea of approximation.

— Bertrand Russell, The Scientific Outlook
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The class IR of intervals

The intervals we will consider are the topologically closed and connected
subsets of R (as specified in the standard IEEE-1788 devoted to interval
arithmetic1), i.e. they belong to the class IR of subsets of R defined by

IR :=
{

∅
}

∪
{

[a, b] | a, b ∈ R, a ≤ b
}

∪
{

[a, +∞) | a ∈ R
}

∪
{

(−∞, b] | b ∈ R
}

∪
{

(−∞, +∞) := R
}

.

1See https://standards.ieee.org/ieee/1788/4431/.
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Operations on intervals

Given two intervals x and y, their sum is given by

x + y :=
{

x + y | x ∈ x, y ∈ y
}

,

their difference by

x − y :=
{

x − y | x ∈ x, y ∈ y
}

and their product by

x · y :=
{

x · y | x ∈ x, y ∈ y
}

.

Examples and surprises: on the blackboard!
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In general: interval extensions

Definition
Let D ⊆ R be a set and let F : D → R be a map.

An interval extension of F is an application F : IR → IR which satisfies
the containment property, namely so that for all x ∈ IR, the set

F (x) :=
{

F (x) | x ∈ x ∩ D
}

is included in F(x).

Examples on the blackboard!

Compare extensions of F : R → R : x 7→ x2

with the product operation.
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Fundamental theorem of interval arithmetic

Theorem
If interval extensions of real functions f1, . . . , fk are composed, the result is
an interval extension of the composition f1 ◦ · · · ◦ fk .

Allows to obtain interval extensions of complicated functions by composing
interval extensions of its subparts.
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In practice

The set IR is a mathematical notion.

In practice, the implementation will use intervals from the set

IF :=
{

x = [x , x ] | x ≤ x are two floating-point numbers
}

∪
{

∅
}

.
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Back to the computation of sin(π)

Let us use the “mpmath” library2 in Python3 and ask the value of

iv.pi

then
iv.sin(iv.pi).

2See in particular the module iv, devoted to interval arithmetic at https://www.mpmath.org/doc/1.0.0/contexts.html.
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What interval arithmetic can and cannot do

It may allow to prove that some values are nonzero, but it cannot
prove that some values are equal to zero.

Example
Let us evaluate iv.sin(1.) as well as iv.sin(iv.pi) and comment on
the result.

If a returned interval is “too big”, it is valid but useless.
For instance, iv.sin(x) could return [-1, 1] regardless of the
value of x, but this bound is useless.
Nevertheless, it is in principle possible to show that given matrices are
invertible, positive/negative definite... using interval arithmetic.
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Locating roots of a function

Let F : [0, 1] → R. If F is an interval extension of F and if x ∈ IR is
included in [0, 1], then

the implication(
0 /∈ F(x)

)
=⇒

(
x does not contain any roots of F

)
holds.

We may thus divide [0, 1] into many “small” intervals and discard all those
for which we are sure that F has no roots, this being determined by
evaluating the interval extension F. We end up with (possibly many) small
intervals such that all potential roots of F belong to one of those.
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What we use the computer for

The main thing we want to prove with the help of the computer is the
following proposition.

Proposition
f0, f1, f2 and f3 are the only nonzero critical points of J∗ up to
symmetries, in the sense that

∀φ ∈ E2 \ {0},
[(

J ′
∗(φ) = 0

)
=⇒

(
∃i ∈ {0, 1, 2, 3}, ∃g ∈ Gt , φ = g · fi

)]
.

Moreover, f1, f2 and f3 are nondegenerate.

Damien Galant Computer-assisted study of NLS on the tetrahedron 19 February 2025 28



General theory The tetrahedron and its symmetries Validated numerics: why and how? Putting everything together

Strategy of the proof

At a high level, the strategy is rather “direct”. It consists in the two
following steps:

1 locating small “boxes” containing all critical points of J∗, by root
finding methods.

2 proving uniqueness of critical points inside each box using second
order information.
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Variational characterization of the critical points

Proposition
The action levels of the critical points we found are so that

J∗(f2) < J∗(f0) < J∗(f3) < J∗(f1).

Moreover,
f0 is a strict local minimum of J∗ on N∗;
f1 is a strict global maximum of J∗ on N∗;
f2 is a strict global minimum of J∗ on N∗;
f3 is a saddle point of J∗ on N∗.
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Qualitative properties of nodal ground states as p → 2

Theorem
There exists δ > 0 such that, for every p ∈ (2, 2 + δ], there exists ũp, a
nodal action ground state of (Pp), such that

ũp(v0) = ũp(v1) = −ũp(v2) = −ũp(v3) > 0.

Moreover, ũp is unique up to symmetries, in the sense that

∀up ∈ H1(Gt),
[
up is a nodal action ground state of (Pp,2)

=⇒
(
∃g ∈ Gt , up = g · ũp

)]
.
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Take-home messages

Metric graphs allow to study interesting one dimensional problems and are
much richer than the usual class of intervals of R. In particular, one may
study highly symmetric examples.

Computer-assisted methods may allow to prove difficult statements and
can be very relevant to study in depth given examples.
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Grazie mille!

v0

v1

v2

v3
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