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The spectral problem on metric graphs

The spectral problem on a compact metric graph amounts to find all
couples (7, u), with u # 0, solving the differential system
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The spectral problem on metric graphs

The spectral problem on a compact metric graph amounts to find all
couples (7, u), with u # 0, solving the differential system

—u" =u on each edge e of G,

u is continuous  for every vertex v of G,
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The spectral problem on metric graphs

The spectral problem on a compact metric graph amounts to find all
couples (7, u), with u # 0, solving the differential system

—u" =u on each edge e of G,

u is continuous  for every vertex v of G,

Z ((1iu (v) =0 for every vertex v of G.
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The spectral problem on metric graphs

The spectral problem on a compact metric graph amounts to find all
couples (7, u), with u # 0, solving the differential system

—u" =u on each edge e of G,

u is continuous  for every vertex v of G,

Z ((:u (v) =0 for every vertex v of G.
Xe

No Dirichlet vertices — v; = 0.
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Given p > 2, we are interested in solutions of
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The nonlinear Schrodinger equation on metric graphs

Given p > 2, we are interested in solutions of

—u" + Au=|ulP~2u  on every edge of G,

(Pp)
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The nonlinear Schrodinger equation on metric graphs

Given p > 2, we are interested in solutions of

—u" + Au=|ulP~2u  on every edge of G,

u is continuous ong, (P»)
p
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The nonlinear Schrodinger equation on metric graphs

Given p > 2, we are interested in solutions of

—u" + Au=|ulP~2u  on every edge of G,

u is continuous on G,

du g (PP)
> (v)=0 for every vertex v.
erv dxe
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The nonlinear Schrodinger equation on metric graphs

Given p > 2, we are interested in solutions of

—u" + Au=|ulP~2u  on every edge of G,

u is continuous on G,

du g (PP)
> (v)=0 for every vertex v.
erv dxe

When p = 2, the solutions of (7,) are the eigenfunctions in Ej.
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Nodal action ground states

Among all solutions of (P,) when p > 2, we are particularly interested in
nodal action ground states, namely sign-changing solutions which
minimize the action functional

1 A 72
Tp(u) = 5”“’“%2@) + 5“”“%2(g) - FHUHIZP(Q)

among all nonzero sign-changing solutions of (P,).
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Nodal action ground states

Among all solutions of (P,) when p > 2, we are particularly interested in
nodal action ground states, namely sign-changing solutions which
minimize the action functional

1 A 72
Tp(u) = 5”“’“%2@) + 5“”“%2(g) - FHUHZ’(Q)

among all nonzero sign-changing solutions of (7).

Question

What is the behavior of nodal action ground states as p — 27
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The quasilinear regime p ~ 2 (p > 2)

Proposition

Let (pn)n>1 C (2,400) be a sequence of exponents which converges to 2
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The quasilinear regime p ~ 2 (p > 2)

Proposition

Let (pn)n>1 C (2,400) be a sequence of exponents which converges to 2
and (up,)n>1 € HY(G) be a sequence of nonzero solutions to the problems

(Ppn).
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The quasilinear regime p ~ 2 (p > 2)

Proposition

Let (pn)n>1 C (2,400) be a sequence of exponents which converges to 2
and (up,)n>1 € HY(G) be a sequence of nonzero solutions to the problems
(Pp,). Assume that (up,)n converges weakly in HY(G) to a function

u, € HY(G).

Damien Galant



General theory The tetrahedron and its symmetries Validated numerics: why and how? Putting everything together
O OO orm

The quasilinear regime p ~ 2 (p > 2)

Proposition

Let (pn)n>1 C (2,400) be a sequence of exponents which converges to 2
and (up,)n>1 € HY(G) be a sequence of nonzero solutions to the problems
(Pp,). Assume that (up,)n converges weakly in HY(G) to a function

u, € HY(G). Then, u, belongs to E;
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The quasilinear regime p ~ 2 (p > 2)

Proposition

Let (pn)n>1 C (2,400) be a sequence of exponents which converges to 2
and (up,)n>1 € HY(G) be a sequence of nonzero solutions to the problems
(Pp,). Assume that (up,)n converges weakly in HY(G) to a function

u, € HY(G). Then, u, belongs to E; and one has

/u*|n|u*]g0dx:0 Vo € E.
g
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The quasilinear regime p ~ 2 (p > 2)

Proposition

Let (pn)n>1 C (2,400) be a sequence of exponents which converges to 2
and (up,)n>1 € HY(G) be a sequence of nonzero solutions to the problems
(Pp,). Assume that (up,)n converges weakly in HY(G) to a function

u, € HY(G). Then, u, belongs to E, and one has

/u*|n|u*]g0dx:0 Vo € Ep.
g

We say that u, € E; is a solution of the reduced problem if the above
condition holds.
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Variational formulation
The functional J,. : B2 — R
1

Te) = 4 [0~ 2 o)) ax

is of class C!, and the solutions of the reduced problem coincide with its
critical points.
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1

Te) = 4 [0~ 2 o)) ax

is of class C!, and the solutions of the reduced problem coincide with its
critical points. We thus have two goals:
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Variational formulation
The functional J,. : B2 — R
1

Te) = 4 [0~ 2 o)) ax

is of class C!, and the solutions of the reduced problem coincide with its
critical points. We thus have two goals:

find all nonzero critical points . € Ep of J;
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Variational formulation
The functional J,. : B2 — R
1

Te) = 4 [0~ 2 o)) ax

is of class C!, and the solutions of the reduced problem coincide with its
critical points. We thus have two goals:

find all nonzero critical points . € Ep of J;

determine the nondegenerate critical points ¢, € Ep, namely those for
which the Hessian J/(.) is invertible
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Variational formulation
The functional J,. : B2 — R
1

Te) = 4 [0~ 2 o)) ax

is of class C!, and the solutions of the reduced problem coincide with its
critical points. We thus have two goals:

find all nonzero critical points . € Ep of J;

determine the nondegenerate critical points ¢, € Ep, namely those for
which the Hessian [7/(¢.) is invertible (when it is defined, which is
not the case around eigenfuncions vanishing identically on edges);
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Variational formulation

The functional J,. : B2 — R
L TR
F(¢) =7 [ #2001 - 2inle(x)]) ax

is of class C!, and the solutions of the reduced problem coincide with its
critical points. We thus have two goals:

find all nonzero critical points . € Ep of J;

determine the nondegenerate critical points ¢, € Ep, namely those for
which the Hessian [7/(¢.) is invertible (when it is defined, which is
not the case around eigenfuncions vanishing identically on edges);

Using a Lyapunov-Schmidt argument, we can show existence and
uniqueness results around a nondegenerate critical point for (7,),
when p =~ 2.
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Variational formulation

The functional J,. : B2 — R
L TR
F(¢) =7 [ #2001 - 2inle(x)]) ax

is of class C!, and the solutions of the reduced problem coincide with its
critical points. We thus have two goals:

find all nonzero critical points . € Ep of J;

determine the nondegenerate critical points ¢, € Ep, namely those for
which the Hessian [7/(¢.) is invertible (when it is defined, which is
not the case around eigenfuncions vanishing identically on edges);

Using a Lyapunov-Schmidt argument, we can show existence and
uniqueness results around a nondegenerate critical point for (7,),
when p = 2. But how to do goals 1 and 27
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Geometry of 7,

For any ¢ € E; \ {0}, the map
(0,+00) = R : t — TJu(typ)

has a unique maximum.

Damien Galant



General theory The tetrahedron and its symmetries Validated numerics: why and how? Putting everything together
umnss =] oo [EEsEEEEEEsEE] oo

Geometry of 7,

For any ¢ € E; \ {0}, the map
(0,+00) = R : t — TJu(typ)

has a unique maximum.

Its value can be computed explicitly and is given by

_fgsozlnlwldX>

() = op( ST
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The reduced Nehari manifold

The reduced Nehari manifold N, defined by

N = {ip € B\ (0} | Ti(e)ie] = 0}
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The reduced Nehari manifold

The reduced Nehari manifold N, defined by

N. = {o € B\ {0} | Tl = 0f
={¢6E2\{0})—/g¢2|n|90|=0},
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The reduced Nehari manifold

The reduced Nehari manifold N, defined by

N. = {o € B\ {0} | Tl = 0f
={¢6E2\{0})—/g302|n|90|=0},

contains all critical points of 7.
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The reduced Nehari manifold
The reduced Nehari manifold N, defined by
Noi={p € £\ {0} | T(e)le] = 0f
= {pc B\ {0} |- [ @misl =0},

contains all critical points of 7.

The reduced Nehari manifold , is a compact C-manifold in £,
diffeomorphic to a sphere via the map ¢ — n.(¢)ep.
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The reduced Nehari manifold

The reduced Nehari manifold N, defined by
N, = {p € B\ {0} | Ti(¢)l¢] = 0}
~{pe B\ {0} |- [ inlel =0},
g

contains all critical points of 7.

The reduced Nehari manifold A, is a compact C-manifold in E,
diffeomorphic to a sphere via the map ¢ — n.(¢)ep.

Theorem (Bonheure, Bouchez, Grumiau, Van Schaftingen (2008))

Weak limits of nodal action ground states minimize T, over N.
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The tetrahedron

In the remainder of the talk, we will focus on the following graph Gi.

V3

V2

Vo

Vi

Damien Galant



General theory The tetrahedron and its symmetries Validated numerics: why and how? Putting everything together
oo s _==sss] [EEsEEEEEEsEE] oo

Second eigenspace of G;

The second eigenvalue of the problem is

Yo = (arccos(—1/3))2
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Second eigenspace of G;

The second eigenvalue of the problem is

Yo = (arccos(—1/3))2

and the second eigenspace is given by

E> = {SOa | a=(ap, a1, a,a3) € R* a0+ a1+ a + a3 20},
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Second eigenspace of G;

The second eigenvalue of the problem is

2
Yo = (arccos(—1/3))
and the second eigenspace is given by
E; = {soa |a=(ap,a1,a,a3) €R* ap+ a1+ ap + a3 = 0},

where ¢, is such that

ajsin(y/72(1 — x)) + aj sin(\/72x)
sin(,/72) ’

pa(x) =
if x belongs to the edge v;v;.

Damien Galant



General theory The tetrahedron and its symmetries Validated numerics: why and how? Putting everything together
oo [sn mmss] [EEsEEEEEEsEE] oo

Second eigenspace of G;

What you should remember

Only two things :-)
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Second eigenspace of G;

What you should remember

Only two things :-)

the eigenspace

EzZ{QOa|32(30731,32,33)€R4,30+a1+32+a3:0}

has dimension three;
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Second eigenspace of G;

What you should remember

Only two things :-)

the eigenspace

EzZ{QOa(a=(ao,al,32,a3)€R4,30+a1+32+a3=0}

has dimension three;

a encodes the values of ¢, at the vertices, in the sense that

pa(vi) = ai

for all i € {0,1,2,3}.
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Symmetries of G;

The group
Gt = 54 X

acts on E»
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Symmetries of G;
The group
Gt = 54 X

acts on E, due to the fact that “all vertices of the tetrahedron are the
same”
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Symmetries of G;
The group
Gt = 54 X

acts on E, due to the fact that “all vertices of the tetrahedron are the
same” and that
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Symmetries of G;

The group
Gt = 54 X

acts on E, due to the fact that “all vertices of the tetrahedron are the
same” and that

In this way, we obtain an isometric group action

GtxE— E:(g,¢)—g ¢,

such that
(g - ¢) = Ju()
for all (g,¢) € Gt x Es.
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Critical points created by the symmetries

The presence of such a rich symmetry group entails the existence of four

distinct families of critical points, due to the principle of symmetric
criticality.
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Critical points created by the symmetries

The presence of such a rich symmetry group entails the existence of four

distinct families of critical points, due to the principle of symmetric
criticality.

Theorem (Principle of symmetric criticality, Palais, 1979)

Assume that the action of the topological group G on the Hilbert space E
is isometric.
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Critical points created by the symmetries

The presence of such a rich symmetry group entails the existence of four

distinct families of critical points, due to the principle of symmetric
criticality.

Theorem (Principle of symmetric criticality, Palais, 1979)

Assume that the action of the topological group G on the Hilbert space E
is isometric. If J € C*(E,R) is invariant under this action
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Critical points created by the symmetries

The presence of such a rich symmetry group entails the existence of four

distinct families of critical points, due to the principle of symmetric
criticality.

Theorem (Principle of symmetric criticality, Palais, 1979)

Assume that the action of the topological group G on the Hilbert space E
is isometric. If J € C*(E,R) is invariant under this action and if u is a
critical point of J restricted to

Fix(G) := {ue E|vge G,g-u:u},
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Critical points created by the symmetries

The presence of such a rich symmetry group entails the existence of four

distinct families of critical points, due to the principle of symmetric
criticality.

Theorem (Principle of symmetric criticality, Palais, 1979)

Assume that the action of the topological group G on the Hilbert space E
is isometric. If J € C*(E,R) is invariant under this action and if u is a
critical point of J restricted to

Fix(G) := {ue E|vge G,g-u:u},

then u is a critical point of J.
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The families of critical points

Proposition

The following eigenfunctions are critical points of Jy:
m fo =7 (Pa,-1,00))
m f1:=7Nu(0(,-1/3,-1/3,-1/3));
B =7 (ean,-1,-1);

m f3:= 7N (Q(1,-1,c,—c)) Where c € (0,1) maximizes the function

[0,1] = R: ¢ = Ju(mn.(P(1,-1,c,~c)))-
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The families of critical points

Proposition

The following eigenfunctions are critical points of Jy:
m fo =7 (Pa,-1,00))
m f1:=7Nu(0(,-1/3,-1/3,-1/3));
B =7 (ean,-1,-1);

m f3:= 7N (Q(1,-1,c,—c)) Where c € (0,1) maximizes the function

[0,1] = R: ¢ = Ju(mn.(P(1,-1,c,~c)))-

Moreover, for every g € G; and every i € {0,1,2,3}, g - f; is a critical
point of 7.
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The families of critical points

Proposition
The following eigenfunctions are critical points of J:
m fo = mnL (©1,-1,0,0))
m =N, (Pa,-1/3,-1/3,-1/3));
u :=7w*(<p(1,1,,17,1));
m f3:= 7N (Q(1,-1,c,—c)) Where c € (0,1) maximizes the function

[0,1] = R: ¢ = Ju(mn.(P(1,-1,c,~c)))-

Moreover, for every g € G; and every i € {0,1,2,3}, g - f; is a critical
point of 7.

For instance, f; is a critical point of 7, restricted to the one-dimensional
subspace of E, taking equal values in vi, v» and vs.
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A natural question

Critical point theory (using the principle of symmetric criticality, Morse
theory, etc), will give relations on the number of critical points and the
existence of some specific symmetric critical points.
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A natural question

Critical point theory (using the principle of symmetric criticality, Morse
theory, etc), will give relations on the number of critical points and the
existence of some specific symmetric critical points.

However, it cannot classify all critical points of J,.
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A natural question

Critical point theory (using the principle of symmetric criticality, Morse
theory, etc), will give relations on the number of critical points and the
existence of some specific symmetric critical points.

However, it cannot classify all critical points of J,.

Question

Does T, possess critical points other than the ones of the four
aforementioned families?
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A natural question

Critical point theory (using the principle of symmetric criticality, Morse
theory, etc), will give relations on the number of critical points and the
existence of some specific symmetric critical points.

However, it cannot classify all critical points of J,.

Question

Does T, possess critical points other than the ones of the four
aforementioned families?

Answer (De Coster, G., Troestler (2024))

Those are the only critical points...
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A natural question

Critical point theory (using the principle of symmetric criticality, Morse
theory, etc), will give relations on the number of critical points and the
existence of some specific symmetric critical points.

However, it cannot classify all critical points of J,.

Question

Does T, possess critical points other than the ones of the four
aforementioned families?

Answer (De Coster, G., Troestler (2024))

Those are the only critical points as shown by a computer-assisted proof.

Damien Galant
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A first example

Let us compute sin(0) and sin(7) using Python.

Image from https://fr.wikipedia.org/wiki/Fichier:Python-logo-notext.svg

Damien Galant



https://fr.wikipedia.org/wiki/Fichier:Python-logo-notext.svg

General theory The tetrahedron and its symmetries Validated numerics: why and how? Putting everything together
(annanns] OIIro s ssssssssss] o

Floating-point numbers in a nutshell

Rough idea

Floating-point numbers use the “scientific notation” on base 2, where both

the significand and the exponent are written with a given number of bits
(digits in base 2).
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Rounding modes

A first (obvious) limitation of numerical computations

The set of floating-point numbers is finite!
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Rounding modes

A first (obvious) limitation of numerical computations

The set of floating-point numbers is finite!

Perhaps worse, even if a, b are floating-point numbers, a + b may not be
such a number.
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Rounding modes

A first (obvious) limitation of numerical computations

The set of floating-point numbers is finite!

Perhaps worse, even if a, b are floating-point numbers, a + b may not be
such a number.

There are thus several rounding modes, depending on whether the result is
to be rounded up, down, towards zero, etc.
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Rounding modes

A first (obvious) limitation of numerical computations

The set of floating-point numbers is finite!

Perhaps worse, even if a, b are floating-point numbers, a + b may not be
such a number.

There are thus several rounding modes, depending on whether the result is
to be rounded up, down, towards zero, etc.

A natural question

How to obtain mathematically rigorous results based on numerical
computations?
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Interval arithmetic: a simple solution?

The main idea of interval arithmetic is very simple, yet powerful.
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The main idea of interval arithmetic is very simple, yet powerful.
The idea of interval arithmetic

We will replace numbers by intervals
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The main idea of interval arithmetic is very simple, yet powerful.
The idea of interval arithmetic

We will replace numbers by intervals in such a way that the result of
an operation belongs to the returned interval.
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Interval arithmetic: a simple solution?

The main idea of interval arithmetic is very simple, yet powerful.
The idea of interval arithmetic

We will replace numbers by intervals in such a way that the result of
an operation belongs to the returned interval.

Appealing:
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The main idea of interval arithmetic is very simple, yet powerful.
The idea of interval arithmetic

We will replace numbers by intervals in such a way that the result of
an operation belongs to the returned interval.

Appealing:

m to analysts: this is a quantitative version of the €'s and the 4's;
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Interval arithmetic: a simple solution?

The main idea of interval arithmetic is very simple, yet powerful.
The idea of interval arithmetic

We will replace numbers by intervals in such a way that the result of
an operation belongs to the returned interval.
Appealing:

m to analysts: this is a quantitative version of the €'s and the 4's;

m to physicists: physical measurements are performed up to a finite
precision anyway.
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Interval arithmetic: a simple solution?

The main idea of interval arithmetic is very simple, yet powerful.
The idea of interval arithmetic

We will replace numbers by intervals in such a way that the result of
an operation belongs to the returned interval.
Appealing:

m to analysts: this is a quantitative version of the €'s and the 4's;

m to physicists: physical measurements are performed up to a finite
precision anyway.

Although this may seem a paradox, all exact science is dominated by the
idea of approximation.

— Bertrand Russell, The Scientific Outlook

Damien Galant



General theory The tetrahedron and its symmetries Validated numerics: why and how? Putting everything together
(annanns] OIIro [asss sssssss] o

The class Zr of intervals

The intervals we will consider are the topologically closed and connected
subsets of R (as specified in the standard IEEE-1788 devoted to interval
arithmetic!), i.e. they belong to the class Zr of subsets of R defined by

1See https://standards.ieee.org/ieee/1788/4431/.
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Operations on intervals
Given two intervals x and y, their sum is given by

X+y:= {x+y\x€x,y€y},

their difference by

x—y::{x—y|X€x,y€y}

and their product by

x-y::{x-y|x€x,y6y}.
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Operations on intervals
Given two intervals x and y, their sum is given by

X+y:= {x—{—y\xéx,yéy},

their difference by

x—y::{x—y|XEx,y€y}

and their product by

x~y::{x-y|x€x,y6y}.

Examples and surprises: on the blackboard!
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In general: interval extensions

Definition
Let D CR beasetandlet F: D— R be amap.

An interval extension of F is an application F : Zr — Zr which satisfies
the containment property, namely so that for all x € Zg, the set

F(x) := {F(x) | x e xn D}

is included in F(x).
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In general: interval extensions

Definition
Let D CR beasetandlet F: D— R be amap.

An interval extension of F is an application F : Zr — Zr which satisfies
the containment property, namely so that for all x € Zg, the set

F(x) := {F(x) | x e xn D}

is included in F(x).

Examples on the blackboard!
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In general: interval extensions

Definition
Let D CR beasetandlet F: D— R be amap.

An interval extension of F is an application F : Zr — Zr which satisfies
the containment property, namely so that for all x € Zg, the set

F(x) := {F(x) | x e xn D}

is included in F(x).

Examples on the blackboard! Compare extensions of F : R — R : x — x?
with the product operation.
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Fundamental theorem of interval arithmetic

Theorem

If interval extensions of real functions fi, ..., f, are composed, the result is
an interval extension of the composition fi o - -- o fy.
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Fundamental theorem of interval arithmetic

Theorem

If interval extensions of real functions fi, ..., f, are composed, the result is
an interval extension of the composition fi o - -- o fy.

Allows to obtain interval extensions of complicated functions by composing
interval extensions of its subparts.
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In practice

The set Zr is a mathematical notion.
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In practice

The set Zr is a mathematical notion.
In practice, the implementation will use intervals from the set

IF = {x = [x,X] | x <X are two floating-point numbers} U {(Z)}
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Back to the computation of sin(7)

Let us use the “mpmath” library? in Python3 and ask the value of
iv.pi
then

iv.sin(iv.pi).

2See in particular the module iv, devoted to interval arithmetic at https://www.mpmath.org/doc/1.0.0/contexts.html.
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What interval arithmetic can and cannot do

m It may allow to prove that some values are nonzero, but it cannot
prove that some values are equal to zero.
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What interval arithmetic can and cannot do

m It may allow to prove that some values are nonzero, but it cannot
prove that some values are equal to zero.

Example

Let us evaluate iv.sin(1.) as well as iv.sin(iv.pi) and comment on
the result.
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What interval arithmetic can and cannot do

m It may allow to prove that some values are nonzero, but it cannot
prove that some values are equal to zero.

Example

Let us evaluate iv.sin(1.) as well as iv.sin(iv.pi) and comment on
the result.

m If a returned interval is “too big", it is valid but useless.
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What interval arithmetic can and cannot do

m It may allow to prove that some values are nonzero, but it cannot
prove that some values are equal to zero.

Example

Let us evaluate iv.sin(1.) as well as iv.sin(iv.pi) and comment on
the result.

m If a returned interval is “too big", it is valid but useless.
For instance, iv.sin(x) could return [-1, 1] regardless of the
value of x, but this bound is useless.
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What interval arithmetic can and cannot do

m It may allow to prove that some values are nonzero, but it cannot
prove that some values are equal to zero.

Example

Let us evaluate iv.sin(1.) as well as iv.sin(iv.pi) and comment on
the result.

m If a returned interval is “too big”, it is valid but useless.
For instance, iv.sin(x) could return [-1, 1] regardless of the
value of x, but this bound is useless.

m Nevertheless, it is in principle possible to show that given matrices are
invertible, positive/negative definite... using interval arithmetic.
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Locating roots of a function

Let F:[0,1] — R. If F is an interval extension of F and if x € Zg is
included in [0, 1], then
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Locating roots of a function

Let F:[0,1] — R. If F is an interval extension of F and if x € Zg is
included in [0, 1], then the implication

(0 ¢ F(x)) = (x does not contain any roots of F)
holds.
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Locating roots of a function

Let F:[0,1] — R. If F is an interval extension of F and if x € Zg is
included in [0, 1], then the implication

(0 ¢ F(x)) = (x does not contain any roots of F)

holds.

We may thus divide [0, 1] into many “small” intervals and discard all those
for which we are sure that F has no roots, this being determined by
evaluating the interval extension F.
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Locating roots of a function

Let F:[0,1] — R. If F is an interval extension of F and if x € Zg is
included in [0, 1], then the implication

(0 ¢ F(x)) = (x does not contain any roots of F)

holds.

We may thus divide [0, 1] into many “small” intervals and discard all those
for which we are sure that F has no roots, this being determined by
evaluating the interval extension F. We end up with (possibly many) small
intervals such that all potential roots of F belong to one of those.
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What we use the computer for

The main thing we want to prove with the help of the computer is the
following proposition.

Proposition

fo, f1, 7> and f3 are the only nonzero critical points of [J, up to
symmetries, in the sense that

Vo € B\ {0}, [(JUp) =0) = (31 €{0,1,2,3},Fg € Gr,p =g ).

Moreover, fi, /> and f3 are nondegenerate.
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Strategy of the proof

At a high level, the strategy is rather “direct”. It consists in the two
following steps:
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Strategy of the proof

At a high level, the strategy is rather “direct”. It consists in the two
following steps:

locating small “boxes” containing all critical points of 7, by root
finding methods.
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Strategy of the proof

At a high level, the strategy is rather “direct”. It consists in the two
following steps:

locating small “boxes” containing all critical points of 7, by root
finding methods.

proving uniqueness of critical points inside each box using second
order information.
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Variational characterization of the critical points

Proposition

The action levels of the critical points we found are so that

J(1) < Tulfo) < Ti(f3) < Tu(f1)-

Moreover,
m fy is a strict local minimum of 7, on N,;
m f1 is a strict global maximum of J, on N,;
® . is a strict global minimum of J, on N, ;
m f3 is a saddle point of [T, on N,.
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oo

Qualitative properties of nodal ground states as p — 2

Theorem

There exists § > 0 such that, for every p € (